

Nigerian Energy Support Programme (NESP)

MINI-GRID, THE MISSING MIDDLE, AN OPPORTUNITY!

Abidjan, March 2017

Implemented by

NESP AT A GLANCE

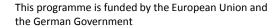
- **Technical cooperation** programme
- Aim: Enabling framework for RE, EE and **Rural Electrification** (focus on mini-grids).
- Funded by European Union and Germany
- Implemented by FMPWH, states (Niger, Ogun, Cross River, Plateau, Sokoto) and GIZ
- Duration: **5 years** (03/2013 02/2018)
- As concerns our mini-grid activities, we cover the full spectrum (holistic approach)
 - TA on policy (e.g. PPP Guidelines) and regulation on State and Federal levels
 - TA on electrification planning (provides market intelligence to private sector)
 - TA and capital grants to private sector for mini-grid development
 - TA to financiers and investors interested in investing in the mini-grid sector

WHAT IS A MINI-GRID?

Definition: Any electricity supply system with its own power generation capacity supplying electricity to more than one customer connected via a low or medium voltage distribution grid and which can operate in isolation from the main grid. Interconnected mini-grids are also possible.

Three major components:

- Production: Generation (renewable energy and diesel genset for backup), Storage (batteries and charge controller), Converters (e.g. inverter), system management (IT equipment) and bus bar (wiring connecting for all production equipment)
- Distribution: subsystem distributing the produced electricity to the users consisting of wiring (DC/AC and single or three phase and overhead or underground)
- Load: all the equipment on the end-user side (e.g. meters/load limiters, internal wiring, grounding and the electric appliances)
- Link to Renewable Energies: Mini-grids can be powered with conventional energy systems such as diesel generators. However, technology development in the renewable energy sector and the resulting drop in the price of RE components has led to the progressive replacement of diesel generators as main the power generation source for mini-grids.


Source: ARE, 2011, "Hybrid mini-grids for rural electrification: lessons learned"

EXAMPLE OF A SOLAR MINI-GRID – POWERSTATION

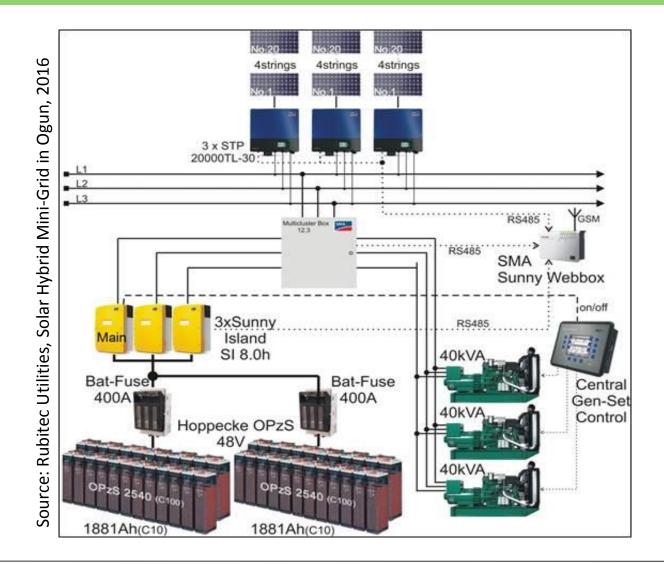
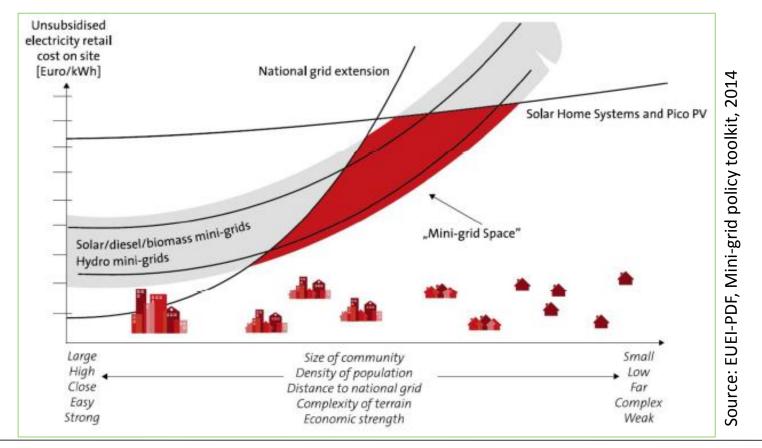


Photo: INENSUS GmbH


EXAMPLE OF A SOLAR MINI-GRID – POWERSTATION

Mini-grid space

Most reliable solution (24/7) for large villages far away from main grid with productive users, but development is resource intensive leading to high tariffs.

Africa progress panel	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Energy service		Task lightning, phone Charge	General lightning, TV and fan	Tier 2 and medium powered appliances	Tier 3 and high powered appliances	Tier 4 and very high powered appliances
Capacity		< 12 Wh	< 200 Wh	< 1 kWh	< 3 <i>,</i> 4 kWh	< 8,3 kWh
Solar product	Solar lantern	Solar lantern + charger	Small SHS	Large SHS	Larger SHS	Larger SHS
Mini Grid			Mini grid	Mini grid	Mini grid	Mini grid

Comparison of rural electrification technologies

	MAIN GRID	MINI-GRID	STAND-ALONE
ADVANTAGES	 Cheapest solution (near urban areas) CAN provide unlimited power supply Most scalable option 	 Flexibility in technical design and operational models Reliable power supply Scalable Can power productive users (tier 4 and 5) Cheap in rural areas Technology advancing rapidly (lower cost/kWh) 	 Independent solution Easy to install and replicate Can be deployed on a purely commercial basis
DISADVANTAGES	 Expensive in the rural areas Not a target area for DisCos (slow expansion) Depends on the backbones from DisCo, TSP and GenCo 	 Resource intensive projects Dependent on regulation (agreements between partners) Need subsidies Limited power supply (Mgt. of demand) Higher tariffs than main grid 	 Provides a very limited power supply Most expensive solution (at least in Nigeria)

Advantages and disadvantages of mini-grid models

Africa progress panel	Advantages	Disadvantages
Utility model	 Experience Access to policymakers Uniform tariff Scalable 	Lack incentivesInefficientPublic finance only
Private model	 Good competences Market driven Decentralized mgt. Can attract priv. finance 	 Upfront finance Sector lacks experience Tariffs and relations Policy and reg. framework
Community model	Community buy-inMeet the demandEmpower local people	Lack of technical experienceLack of management skillsDecision-making slow
Public-private model	Combines advantagesResponsibilities optimized	Difference in management sys.Strong framework required

- IEA estimates that 140 M people in Africa will gain access to mini-grids in Africa. Requiring installation of 4000 – 8000 mini-grids a year in 25 years!
- Nigeria: 4000 sites 13 Million people (GIZ mapping on GIS)
- Benchmark in Nigeria: Euro 572/house hold connection
- Investment need in Nigeria: 2 billion Euro
- Capacity: 1,8 GWp

Productive loads key to scale

INTEGRATION

- Productive loads allow for economies to scale
- This in turn improves the profitability

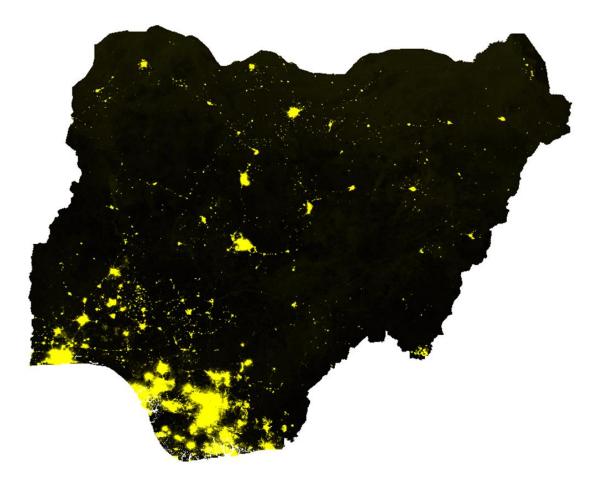
CHALLENGES

- Social
 - Change of habits
- Economic
 - Productive tariffs need to compete against diesel
 - Investment hurdle related to mechanization
- Technical
- Investment nurgie related to mechanization
 Echnical
 Load/Demand management, e.g. avoid pump Photos¹ and/or mills etc. running on batteries

KEY PRODUCTIVE USERS

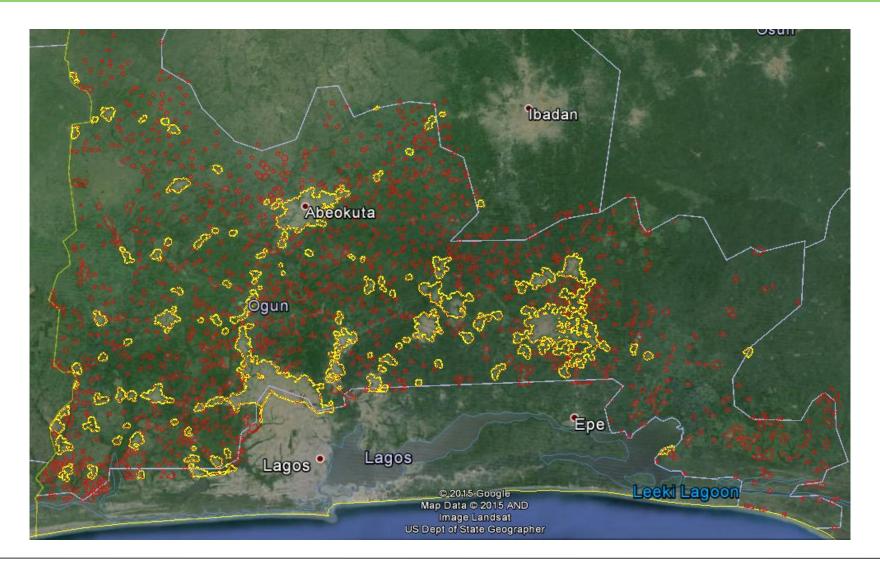
ENABLING FRAMEWORK FOR PRIVATE MINI-GRIDS

- Strong interest on federal and state levels as concerns off-grid solutions
- Deep understanding of mini-grids at key MDAs (e.g. FMPWH or NERC)
- Conducive legislative and policy frameworks for private mini-grids
- Mini-grid **regulation** (supported by NESP) has been approved by NERC
 - Compensation for mini-grid operators in case of main-grid connection
 - Tariff calculation methodology allowing for reflective tariffs
- NESP partner states are developing mini-grid **PPP frameworks**
- Financiers, some supported by NESP, are lending (e.g. Bol, bettervest)

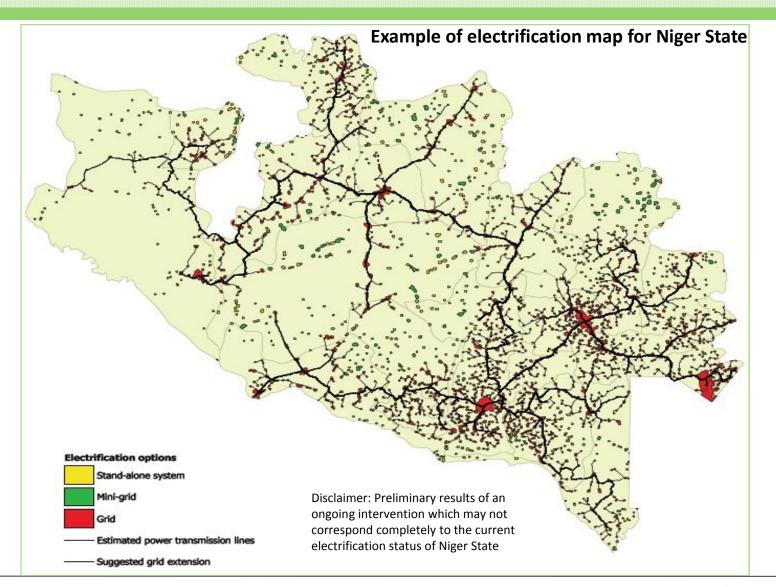

MARKET HAS MATURED

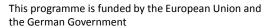
- When NESP started
 - Privately-led mini-grids in operation (but 100% grant funded)
 - Technically and financially capable local companies
- In 2015, NESP carried out nationwide Guided Idea Competition to pilot PPP model
 - Out of 100+ companies, 8 were retained, 4 PPPs signed and 5 pilots
 - NESP provides TA and grant to offset ~40% of project's capital expenditure
 - Private partners contribute with their manpower as well as debt/equity
 - State Governments contribute by covering regulatory costs
- Attracted by conducive framework, **international companies** now scouting market

This programme is funded by the European Union and the German Government

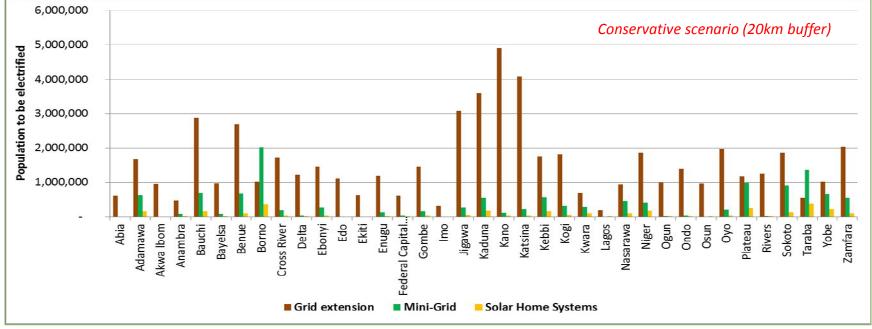


Light emission image of Nigeria




Clusters in Ogun State

Electrification maps



OFF-GRID PV MINI-GRID MARKET POTENTIAL

Figures included in slide are estimates based on NESP/FMPWH pre-planning. NESP also carried out advanced planning with its partner states.

- Now that market is mature, we need to concentrate on scale!!!!
- 13M Nigerians living in areas viable for off-grid PV mini-grids
- Potential for nearly **4000 mini-grids** with a PV capacity of **1.8 GWp**
- Potential capital investment estimated at 2 billion Euros

Source: NESP, "Preliminary analysis for off-grid PV capacities for the whole of Nigeria", 2015

NESP plans for roll out phase

- Support preparation of **replication strategies**
 - Up to 10 projects per private partner ~50 projects in total
 - Total investment portfolio = 25M EUR
- Support **20 new projects** with 40% capital grant and TA
- Seek collaborations with investors to match-make them with its private partners
- Provide **technical**, **financial** and **legal** advice to investors

Thank you!

Nigerian Energy Support Programme (NESP)

Jannik Moller Head, Rural Electrification jannik.moller@giz.de +234(0)8054603084

