ECOWAS/GBEP 5th Bioenergy Week

&

Study Tour for Capacity Building

“Addressing food and energy security through sustainable biomass value chains”

Ghana, Accra, 22-24 June 2017

Session 3: RESOURCES ASSESSMENT, OPTIONS AND STRATEGIES
WATER RESOURCES
Prof Suani Coelho
Coordination: Prof. Dr. Suani T. Coelho

Special Contribution: Prof. Dr. José Goldemberg

Research team (2017):

- Five Pos doc fellows:
 - Alessandro Sanches Pereira
 - Fábio R. Soares
 - Javier Farago Escobar
 - Marilin Mariano dos Santos
 - Vanessa Pecora GarciaLasso

- Eight PhD students:
 - Adriano Violante
 - Fernando Oliveira
 - Luís Gustavo Tudeschini
 - Manuel Moreno Ruiz Poveda
 - Monica Anater
 - Roberto Sartori
 - Claudia Treumann
 - Naraisa Coluna (PhD candidate)

- Two MSc students:
 - Caio Jopper
 - Danilo Perecin

SINCE 1996
www.iee.usp.br/gbio
Summary

• Presentation of RCGI- Research Center on Gas Innovation – FAPESP/SHELL

• Water Quantity
 – Water consumption on ethanol from sugarcane
 • Progress on efficiency
 • Use of vinasse for fertirrigation – reduction on cane irrigation in some countries

• Water Quality
 – Bioenergy from vinasse and from urban and rural residues (large x small scale)
 – Synergies – increasing energy access x environmental sustainability

• Challenges – lack of funds, lack of policies,

• Brazilian experience – how utilities are obliged to invest on renewable energy R&D projects
Cleaner energy for a sustainable future

A centre for advanced studies of the sustainable use of natural gas, biogas, hydrogen and abatement of CO₂ emissions
RCGI – PROJECT 27 – Biogas Perspectives for São Paulo State

• **Roadmaps**
 – Biogas production technologies
 – Biogas purification – Biomethane

• Proposals to improve current legislation in Brazil and São Paulo

• Geo-referenced biogas mapping for São Paulo State
Potential for Biomethane injection into NG pipelines
Ethanol mills x gas pipelines (Sao Paulo)
Biomethane & Independence on diesel imports
Possible replacement of 59.7% of diesel consumption in SP

2015/16 season

N-Northeast:
49 MM t cane
1.9 billion L ethanol

Center-South:
617 MM t cane
No irrigation
Ferti-irrigation w/ vinasse
28.2 billion L ethanol
“Rescue” irrigation (*):
To plant sugarcane 80-120 mm
To ratoon cane 40-60 mm

Productivity average gains (*):
Sugar cane plant 12 to 20%
Ratoon cane 8 to 12%

Reuse: reduces the need for new uptake for irrigation.

(*) Source: Rosenfeld, U. Irrigação e Eferriragião nas Sub Regiões de SP e GO. Palestra: Simpósio de Tecnologia de Produção de Cana-de-Açúcar, GAPE/FEALQ, Piracicaba, 04/07/2003

Workshop on “Examples of Positive Bioenergy and Water Relationships”
Royal Swedish Academy of Agriculture and Science (KSLA)
Stockholm, 25-26 August 2015
Water use in sugarcane ethanol production

- **Agricultural phase:** most of the sugarcane produced in Brazil does not need irrigation.

- **Industrial phase – Progress in efficiency**
 - Reduction on water use (catchment):
 - 1997: 5 m³/t sugarcane
 - 2015 – maximum of 0.85 m³/tc - mandatory in Sao Paulo State

 Results from GBEP Indicators Project for Brazil
 - Some mills less than 0.7 m³/tc
 - Sugarcane dry cleaning process (no water)
 - Mechanical harvesting of green cane – little need for cleaning

Source: Coelho, S.
The water catchment, which had been 15-20 m³ per ton of cane about four decades ago, has been minimized with the closing of the water systems to reuse.

On average, the water catchment for industry, is about 2 m³ / ton of cane (data from 2005)

The self imposed target is 1 m³ per ton of cane
Water quality (1/2) – ethanol mills

1. Water quality in ethanol sector

 a) No water discharge

 b) Vinasse (by-product from ethanol distillation, 8-12 L/L of ethanol)
 – Current use: fertirrigation
 – Current trends: vinasse biodigestion - energy production
Vinasse anaerobic digestion for energy conversion
GEO ENERGETICA MILL – PARANA STATE

Filter cake, tops and leaves, vinasse
2012 – Start-up - 4 MW
Expansion – 16 MW
Water quality (2/2) – Synergies of energy production x environmental sustainability

2. Urban residues – MSW – case study
 – Furnas Electric Co. (Minas Gerais State)
 – 35 municipalities around the lake (touristic region)
 – Inadequate disposal of MSW
 – Possible water contamination with slurry from the waste
Water quality (2/2) – Synergies of energy production x environmental sustainability

2. Urban residues (cont.)

- Furnas Electric Co. (Minas Gerais State)

- Waste to energy plant – Municipality of Boa Esperança – 40,401 inhabitants
 - 1 MWe – MSW gasification plant (syngas to power)
 - Brazilian technology – CARBOGAS fluidized bed gasifier

BRAZILIAN TECHNOLOGY
MSW or biomass
Small Scale Fluidized Bed Gasification Plant

- MSW: 55 ton/day
- Net power generated: 1.06 MW
- Power surplus to export: 0.805 MW
- Area: 7,800 m²

- MSW LHV: 2,217 kcal/kg
- RDF LHV: 3,770 kcal/kg (refuse derived fuel)
- Syngas LHV: 1,294 kcal/Nm³
Energy potential from MSW in the municipalities

<table>
<thead>
<tr>
<th>n</th>
<th>City</th>
<th>State</th>
<th>People (Kg/day)</th>
<th>MSW Potential (Kg/day)</th>
<th>Power (KW)</th>
<th>MWh/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Varginha</td>
<td>Minas Gerais</td>
<td>130,139</td>
<td>130,139</td>
<td>3.761</td>
<td>103,75</td>
</tr>
<tr>
<td>2</td>
<td>Lavras</td>
<td>Minas Gerais</td>
<td>98,172</td>
<td>98,172</td>
<td>2.837</td>
<td>78,27</td>
</tr>
<tr>
<td>3</td>
<td>Alfenas</td>
<td>Minas Gerais</td>
<td>77,618</td>
<td>77,618</td>
<td>2.243</td>
<td>61,88</td>
</tr>
<tr>
<td>4</td>
<td>Formiga</td>
<td>Minas Gerais</td>
<td>67,617</td>
<td>67,617</td>
<td>1.954</td>
<td>53,91</td>
</tr>
<tr>
<td>5</td>
<td>Três Pontas</td>
<td>Minas Gerais</td>
<td>56,156</td>
<td>56,156</td>
<td>1.623</td>
<td>44,77</td>
</tr>
<tr>
<td>6</td>
<td>Guaxupé</td>
<td>Minas Gerais</td>
<td>51,488</td>
<td>51,488</td>
<td>1.488</td>
<td>41,05</td>
</tr>
<tr>
<td>7</td>
<td>Campo Belo</td>
<td>Minas Gerais</td>
<td>53,656</td>
<td>53,656</td>
<td>1.551</td>
<td>42,78</td>
</tr>
<tr>
<td>8</td>
<td>Machado</td>
<td>Minas Gerais</td>
<td>40,760</td>
<td>40,760</td>
<td>1.178</td>
<td>32,50</td>
</tr>
<tr>
<td>9</td>
<td>Boa Esperança</td>
<td>Minas Gerais</td>
<td>40,018</td>
<td>40,018</td>
<td>1.157</td>
<td>31,90</td>
</tr>
<tr>
<td>10</td>
<td>Campos Gerais</td>
<td>Minas Gerais</td>
<td>28,683</td>
<td>28,683</td>
<td>0.829</td>
<td>22,87</td>
</tr>
<tr>
<td>11</td>
<td>Elói Mendes</td>
<td>Minas Gerais</td>
<td>26,759</td>
<td>26,759</td>
<td>0.773</td>
<td>21,33</td>
</tr>
<tr>
<td>12</td>
<td>Nepomuceno</td>
<td>Minas Gerais</td>
<td>26,725</td>
<td>26,725</td>
<td>0.772</td>
<td>21,31</td>
</tr>
<tr>
<td>13</td>
<td>Carmo do Rio Claro</td>
<td>Minas Gerais</td>
<td>21,206</td>
<td>21,206</td>
<td>0.613</td>
<td>16,91</td>
</tr>
<tr>
<td>14</td>
<td>Perdões</td>
<td>Minas Gerais</td>
<td>21,013</td>
<td>21,013</td>
<td>0.607</td>
<td>16,75</td>
</tr>
<tr>
<td>15</td>
<td>Guaxupé</td>
<td>Minas Gerais</td>
<td>21,007</td>
<td>21,007</td>
<td>0.607</td>
<td>16,75</td>
</tr>
<tr>
<td>16</td>
<td>Machado</td>
<td>Minas Gerais</td>
<td>19,391</td>
<td>19,391</td>
<td>0.560</td>
<td>15,46</td>
</tr>
<tr>
<td>17</td>
<td>Areado</td>
<td>Minas Gerais</td>
<td>14,503</td>
<td>14,503</td>
<td>0.419</td>
<td>11,56</td>
</tr>
<tr>
<td>18</td>
<td>Monte Belo</td>
<td>Minas Gerais</td>
<td>13,435</td>
<td>13,435</td>
<td>0.388</td>
<td>10,71</td>
</tr>
<tr>
<td>19</td>
<td>Guapé</td>
<td>Minas Gerais</td>
<td>14,349</td>
<td>14,349</td>
<td>0.415</td>
<td>11,44</td>
</tr>
<tr>
<td>20</td>
<td>Alterosa</td>
<td>Minas Gerais</td>
<td>14,306</td>
<td>14,306</td>
<td>0.413</td>
<td>11,41</td>
</tr>
<tr>
<td>21</td>
<td>Cabo Verde</td>
<td>Minas Gerais</td>
<td>14,262</td>
<td>14,262</td>
<td>0.412</td>
<td>11,37</td>
</tr>
<tr>
<td>22</td>
<td>Ilúcica</td>
<td>Minas Gerais</td>
<td>12,061</td>
<td>12,061</td>
<td>0.349</td>
<td>9,62</td>
</tr>
<tr>
<td>23</td>
<td>Cristais</td>
<td>Minas Gerais</td>
<td>12,046</td>
<td>12,046</td>
<td>0.348</td>
<td>9,60</td>
</tr>
<tr>
<td>24</td>
<td>Campo do Meio</td>
<td>Minas Gerais</td>
<td>11,831</td>
<td>11,831</td>
<td>0.342</td>
<td>9,43</td>
</tr>
<tr>
<td>25</td>
<td>Coqueiral</td>
<td>Minas Gerais</td>
<td>9,492</td>
<td>9,492</td>
<td>0.274</td>
<td>7,57</td>
</tr>
<tr>
<td>26</td>
<td>Pimenta</td>
<td>Minas Gerais</td>
<td>8,582</td>
<td>8,582</td>
<td>0.248</td>
<td>6,84</td>
</tr>
<tr>
<td>27</td>
<td>Capitólio</td>
<td>Minas Gerais</td>
<td>8,535</td>
<td>8,535</td>
<td>0.247</td>
<td>6,80</td>
</tr>
<tr>
<td>28</td>
<td>Serrania</td>
<td>Minas Gerais</td>
<td>7,778</td>
<td>7,778</td>
<td>0.225</td>
<td>6,20</td>
</tr>
<tr>
<td>29</td>
<td>São João Batista do Glória</td>
<td>Minas Gerais</td>
<td>7,241</td>
<td>7,241</td>
<td>0.209</td>
<td>5,77</td>
</tr>
<tr>
<td>30</td>
<td>São José da Barra</td>
<td>Minas Gerais</td>
<td>7,155</td>
<td>7,155</td>
<td>0.207</td>
<td>5,70</td>
</tr>
<tr>
<td>31</td>
<td>Divisa Nova</td>
<td>Minas Gerais</td>
<td>5,990</td>
<td>5,990</td>
<td>0.173</td>
<td>4,78</td>
</tr>
<tr>
<td>32</td>
<td>Cana Verde</td>
<td>Minas Gerais</td>
<td>5,739</td>
<td>5,739</td>
<td>0.166</td>
<td>4,58</td>
</tr>
<tr>
<td>33</td>
<td>Aguanil</td>
<td>Minas Gerais</td>
<td>4,293</td>
<td>4,293</td>
<td>0.124</td>
<td>3,42</td>
</tr>
<tr>
<td>34</td>
<td>Ribeirão Velho</td>
<td>Minas Gerais</td>
<td>3,990</td>
<td>3,990</td>
<td>0.115</td>
<td>3,18</td>
</tr>
<tr>
<td>35</td>
<td>Fama</td>
<td>Minas Gerais</td>
<td>3,949</td>
<td>3,949</td>
<td>0.110</td>
<td>3,13</td>
</tr>
<tr>
<td>TOTAL</td>
<td>958,415</td>
<td>958,415</td>
<td>27,698</td>
<td>764</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Estimates from J. Escobar, GBIO/USP, 2017)
Water quality (2/2) – Synergies of energy production x environmental sustainability

3. Rural residues (Parana State)
 - Small farmers – need for adequate disposal of animal waste
 - To avoid contamination of rivers and lakes
 - Itaipu Electric Co – Ajuricaba Basin
 • 21 farmers (5-swin and 16-cow producers)
 • Biodigestion plants (large and small)
 • Biogas cleaning (H2S)
 • Logistic: Biogas pipeline for the thermoelectric power plant

Source: Ajuricaba Project – Visit Suani Coelho (2017)
• Biogas-cookstoves (Brazilian manufacturer - MULLER)

• Biogas for small scale electricity production – 80kW engine

• 2017 - Tests with biomethane in light and heavy vehicles

Source: Ajuricaba Project – Visit Suani Coelho (2017)
Last issue: a recent example from Kenya

Cogen for Africa Project – 2011
UNEP/GEF
AfDB

Stephen Karekezi

Director
AFREPREN/FWD
P.O Box 30979 – 00100 GPO
Nairobi, Kenya
Tel: +254 -20-3866032
Email: afrepren@africaonline.co.ke
Website: http://www.afrepren.org
Energy Security for Agro-industry - Kenya

Solar PV (Horticulture - Tambuzi, Kenya)

Biogas (PJ Dave Flowers, Kenya)
Kakira Sugar Ltd, Uganda

Ethanol plant with own vinasse/biogas-based cogeneration unit (0.4MW)
General challenges for syngas, biogas and biomethane projects

• Lack of policies for demonstration plants
• Lack of capacity building of agro-industries and farmers
• Lack of understanding the synergies between syngas/biogas plants and reduction on environmental impacts
• LACK OF FUNDS...
Brazilian experience with R&D projects for renewable energies

- **Brazilian banks (e.g. BNDES) make investments (large plants)**

- **New legislation (2000) for electric utilities: mandatory to apply 0.5 % of revenues on Research and Development Projects + 0.5% in energy efficiency projects (Federal Law 9,991/2000)**

 - Brazilian Regulatory Agency – ANEEL – in charge of the enforcement (www.aneel.gov.br)
 - Several projects already developed with such funds
 - Example – ITAIPU Project in Ajuricaba basin – USD 500,000 investment (21 farms)

- **RCGI-Project 27 – Policies proposals for Biogas and Biomethane improvements (injection into NG grid)**
ACKNOWLEDGMENTS

JAVIER ESCOBAR, PHD – GBIO/IEE/USP
MARILIN MARIANO – GBIO/IEE/USP
LUCIANO INFIESTA, ENG – CARBOGAS
CAIO JOPERT – GBIO/IEE/USP/BR

facebook.com/GasInnovation
twitter.com/rcgipage
www.usp.br/rcgi
THANK YOU
MERCI
OBRIGADA
SUANI@IEE.USP.BR
WWW.IEE.USP.BR/GBIO

facebook.com/GasInnovation
twitter.com/rcgipage
www.usp.br/rcgi