#### August 25, 2011

| Day Four 25 August 2011        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                | <b>RETScreen Training on RE&amp;EE Project Analysis by ECREEE</b> |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Location: KNUST, Kumasi, Ghana |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Time                           | Session                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 09:00                          | 1                                                                 | <i>RETs_2</i> : Wind Energy Technology: Power point presentation - Energy Project Analysis and demonstration of calculation of case studies on Wind power generation                                                                                                                                                                                                                               |  |  |  |  |  |
| 10:30                          |                                                                   | Tea/coffee/cocoa break                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 11:00                          | 2                                                                 | Case Studies: Group work – Discussion of group work – comments                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 12:45                          |                                                                   | Lunch break                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 14:00                          | 3                                                                 | <ul> <li><i>RET_3</i>: Mini-Hydro Power Generation</li> <li>Power point presentation – example of case study</li> <li>Case study: Hydro power generation – Group discussions - Project</li> <li>Analysis of case studies from the ECOWAS region to be undertaken by the participants in working groups – Presentation of calculations of case studies by working groups and discussions</li> </ul> |  |  |  |  |  |
| 15:30                          |                                                                   | Tea/coffee/cocoa break                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 16:00                          | 4                                                                 | RET_4: Thermal Energy Analysis<br>Power point presentation – Solar Thermal heat – Case study –Group<br>discussions<br>RET_5: Biomass based combined heat and electricity generation                                                                                                                                                                                                                |  |  |  |  |  |
| 18:30                          |                                                                   | End of Day Four                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

#### **5. Wind Energy Project Analysis**



## **5.1 Objective**

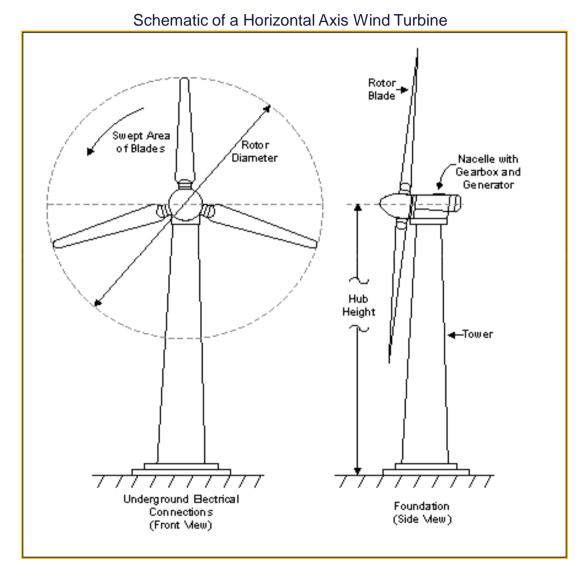
Present wind energy projects analysis using RETScreen

### What do wind energy systems provide?

- Electricity for
  - Central-grids
  - Isolated-grids
  - Remote power supplies
  - Water pumping
- ....but also...
  - Support for weak grids
  - Reduced exposure to energy price volatility
  - Reduced transmission and distribution losses



San Gorgino Windfarm, Palm Springs, California, USA


Photo Credit: Warren Gretz/ NREL Pix

# Wind Turbine Description

- Components
  - Rotor
  - Gearbox
  - Tower
  - Foundation
  - Controls
  - Generator

#### • Types

- Horizontal axis
  - Most common
  - Controls or design turn rotor into wind
- Vertical axis
  - Less common



## **Utilisation of Wind Energy**

- Off-Grid
  - Small turbines (50 W to 10 kW)
  - Battery charging
  - Water pumping
- Isolated-Grid
  - Turbines typically 10 to 200 kW
  - Reduce generation costs in remote areas: wind-diesel hybrid system
  - High or low penetration
- Central-Grid
  - Turbines typically 200 kW to 2 MW
  - Windfarms of multiple turbines

Off-Grid, 10-kW Turbine, Mexico

Photo Credit: Charles Newcomber/ NREL Pix

## 5.4 Classification des réseaux éoliens

#### • Hors réseau

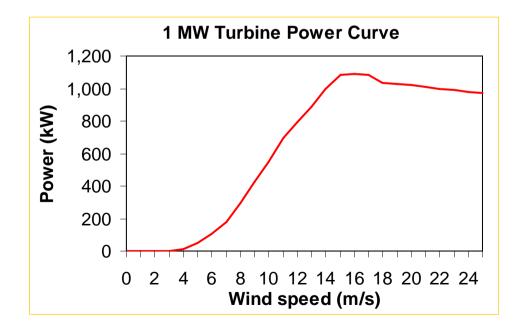

- Petites éoliennes (50 W à 10 kW)
- Chargement de batteries
- Pompage de l'eau
- Réseau isolé
  - Éoliennes de 10 à 200 kW
  - Les systèmes hybrides éolien-diesel réduisent les coûts de production dans les régions éloignées
  - Taux de pénétration élevé ou bas
- Réseau central
  - Éoliennes de 200 kW à 2 MW
  - Parcs éoliens de plusieurs machines



Photo : Charles Newcomber/ NREL Pix

# Wind Resource

- High average wind speeds are essential
  - 4 m/s annual average is minimum
  - People tend to overestimate the wind
  - Wind speed tends to increase with height
- Good resource
  - Coastal areas
  - Crests of long slopes
  - Passes
  - Open terrain
  - Valleys that channel winds
- Typically windier in
  - Winter than summer
  - Day than night



#### Examples: Europe and USA Central-Grid Wind Energy Systems

- Intermittent generation not a problem: 17% of Denmark's electricity is from wind with no additional reserve generation
- Quick projects (2 to 4 years) that can grow to meet demand



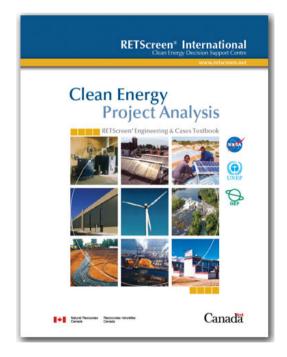
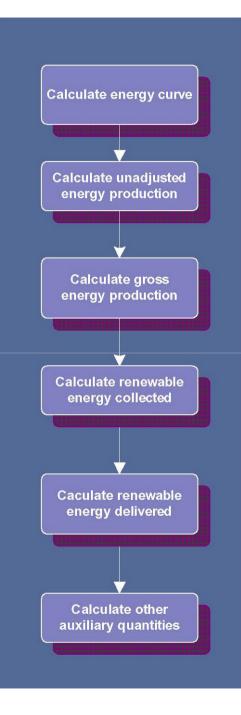

Photo Credit: Warren Gretz/ NREL Pix



Photo Credit: Danmarks Tekniske Universitet

- Land can be used for other purposes, such as agriculture
- Individuals, businesses, and cooperatives sometimes own and operate single turbines


### **RETScreen<sup>®</sup>** Wind Energy Calculation



#### See e-Textbook

Clean Energy Project Analysis: RETScreen<sup>®</sup> Engineering and Cases

Wind Energy Project Analysis Chapter

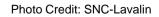


# Conclusions

- Wind turbines provide electricity on and off grid worldwide
- A good wind resource is an important factor for successful projects
- Availability of production credits or Greenpower rates are important for on-grid projects
- RETScreen<sup>®</sup> calculates energy production using annual data with an accuracy comparable to hourly simulations
- RETScreen<sup>®</sup> can provide significant preliminary feasibility study cost savings






Alercio 

Next: Energie Eolienne, quelques cas d'etudes pratiques

## 6. Small Hydro Project Analysis

Run-of-River Small Hydro Project, Canada







**O** UNEP

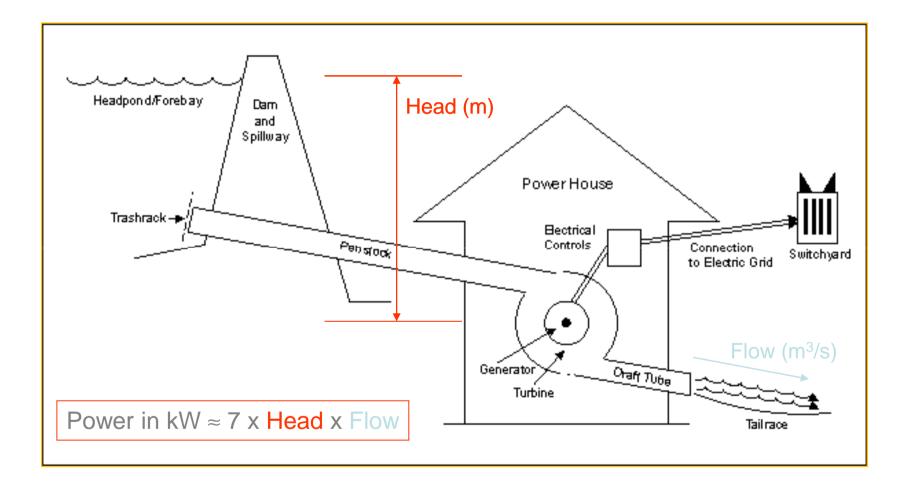
GEF

# **Objectives**

 Review basics of Small Hydro systems

 Illustrate key considerations for Small Hydro project analysis

 Introduce RETScreen<sup>®</sup> Small Hydro Project Model


#### What do small hydro systems provide?

- Electricity for
  - Central-grids
  - Isolated-grids
  - Remote power supplies
- ....but also....
  - Reliability
  - Very low operating costs
  - Reduced exposure to energy price volatility



Photo Credit: Robin Hughes/ PNS

## **Small Hydro System Description**



# World Hydro Resource



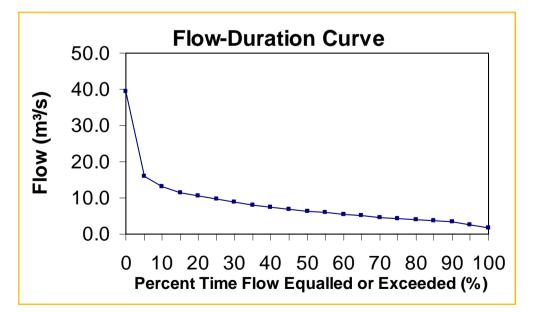
#### **RETS**CREEN<sup>®</sup> INTERNATIONAL

www.retscreen.net

- More rain falls on continents than evaporates from them
- For equilibrium, rain must flow to the oceans in rivers

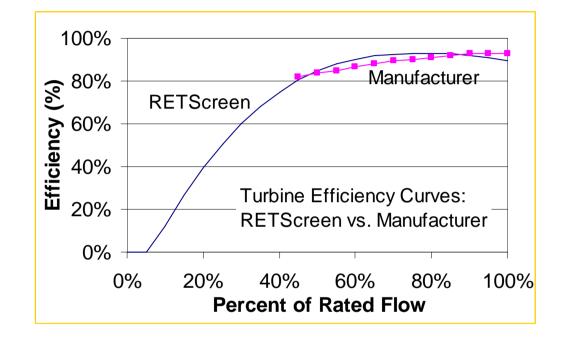
|                            | Technical Potential<br>(TWh/year) | % Developed |
|----------------------------|-----------------------------------|-------------|
| Africa                     | 1,150                             | 3           |
| South Asia and Middle East | 2,280                             | 8           |
| China                      | 1,920                             | 6           |
| Former Soviet Union        | 3,830                             | 6           |
| North America              | 970                               | 55          |
| South America              | 3,190                             | 11          |
| Central America            | 350                               | 9           |
| Europe                     | 1,070                             | 45          |
| Australasia                | 200                               | 19          |

Source: Renewable Energy: Sources for Fuels and Electricity, 1993, Island Press.


# "Small" Hydro Projects

- "Small" is not universally defined
  - Size of project related not just to electrical capacity but also to whether low or high head

|       | Typical<br>Power | RETScreen <sup>®</sup><br>Flow | RETScreen <sup>®</sup><br>Runner Diameter |
|-------|------------------|--------------------------------|-------------------------------------------|
| Micro | < 100 kW         | < 0.4 m³/s                     | < 0.3 m                                   |
| Mini  | 100 to 1,000 kW  | 0.4 to 12.8 m <sup>3</sup> /s  | 0.3 to 0.8 m                              |
| Small | 1 to 50 MW       | > 12.8 m³/s                    | > 0.8 m                                   |


# Site Hydro Resource

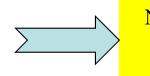
- Very site specific: an exploitable river is needed!
  - Change in elevation over a relatively short distance (head)
  - Acceptable variation in flow rate over time: flow duration curve
    - Residual flow reduces flow available for power
- Estimate flow duration curve based on
  - Measurements of flow over time
  - Size of drainage above site, specific run-off, and shape of flow duration curve



#### Example Validation of the RETScreen<sup>®</sup> Small Hydro Project Model

- Turbine efficiency
  - Compared with manufacturer's data for an installed 7 MW GEC Alsthom Francis turbine
- Plant capacity & output
  - Compared with HydrA for a Scottish site
  - All results within 6.5%




- Formula costing method
  - Compared with RETScreen<sup>®</sup>, within 11% of a detailed cost estimate for a 6 MW project in Newfoundland

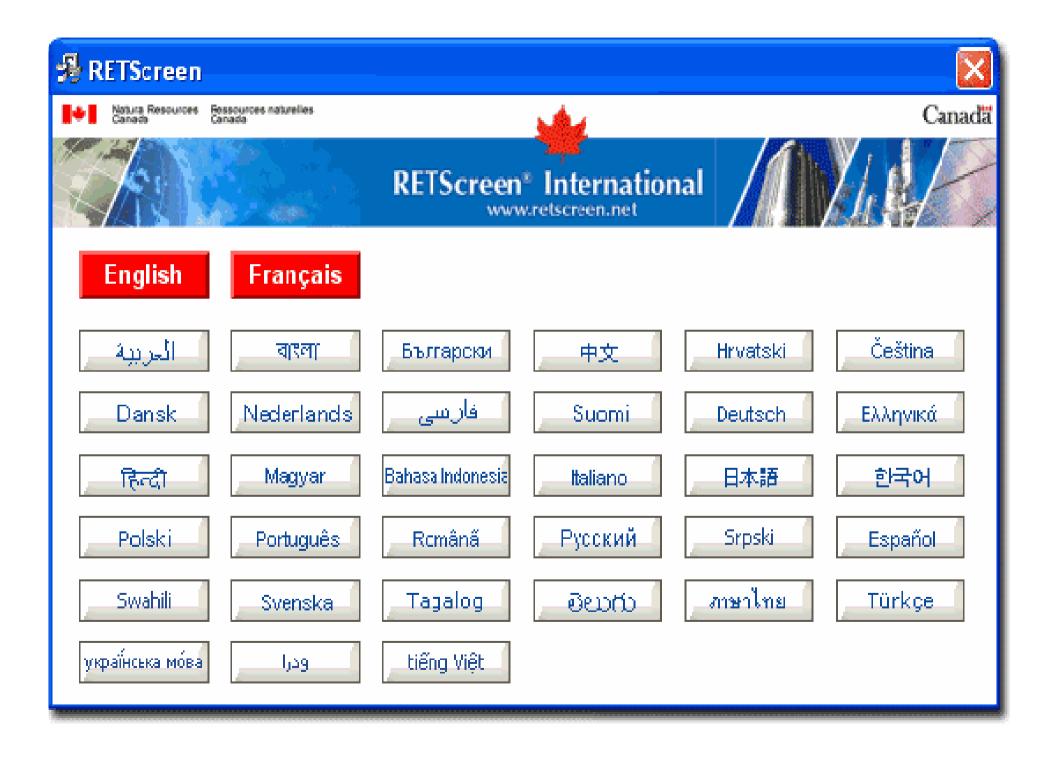
## Conclusions

- Small hydro projects (up to 50 MW) can provide electricity for central or isolated-grids and for remote power supplies
- Run-of-river projects:
  - Lower cost & lower environmental impacts
  - But need back-up power on isolated grid
- Initial costs high and 75% site specific
- RETScreen<sup>®</sup> estimates capacity, firm capacity, output and costs based on site characteristics such as flow-duration curve and head
- RETScreen<sup>®</sup> can provide significant preliminary feasibility study cost savings



Alercio




Next: Energie Hydroelectrique quelques cas d'etudes pratiques

## **RETScreen** Version 5

• Energy audit analysis



### **Soleil, source des energies**





Alercio