
Small wind turbines & hybrid systems

Recommendations for application and their potential

Tom Cronin Wind Energy Systems DTU Wind Energy Technical University of Denmark

tocr@dtu.dk www.vindenergi.dtu.dk

DTU Wind Energy Department of Wind Energy

Outline

- The applications for SWTs and hybrid systems
- The DTU experience

TECHNICAL

- Wind resource
- Small wind turbines
- System engineering

ORGANISATIONAL

- Project implementation
- Operational experience

Summary of recommendations

Applications for wind-hybrid systems

- Providing power where there is no grid
 - Rural electrification
- Support of grid where it is not economic to extend it
 - More semi-urban locations
- Producing power to contribute to local consumption
 - Use local grid as 'storage': requires a good grid

3 **DTU Wind Energy, Technical University of Denmark**

The DTU experience

DTU Wind Energy Department of Wind Energy

DTU Electrical Engineering Department of Electrical Engineering

- SWT testing & approvals
- Wind-hybrid system simulation
 - Smart grids with renewable energy
 - SYSLAB research facility
 - System engineering software
- Sustainable energy policies in rural areas
- Capacity building

4 DTU Wind Energy, Technical University of Denmark

Outline

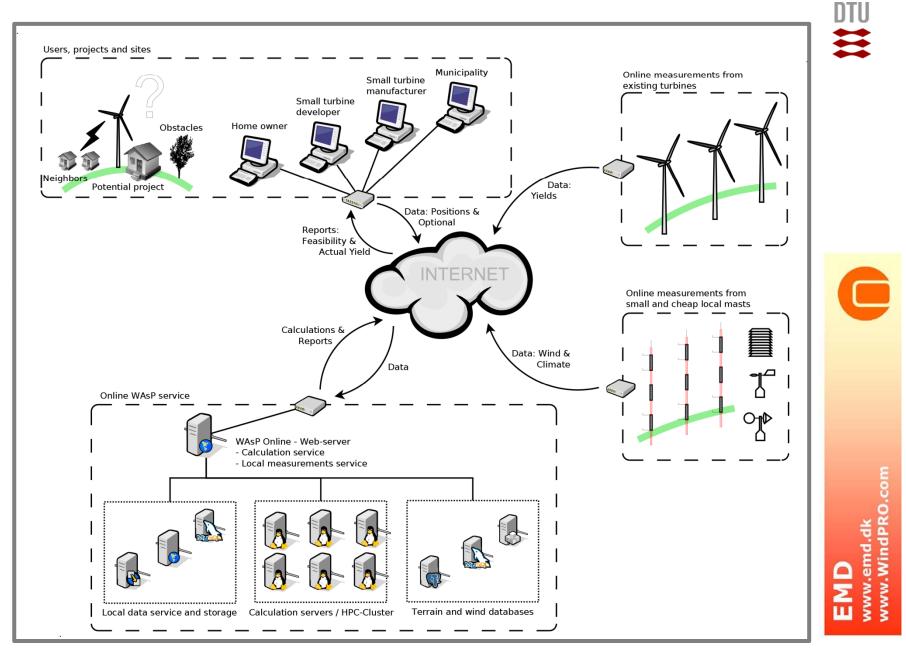
- The applications for SWTs and hybrid systems
- The DTU experience

TECHNICAL

- Wind resource
- Small wind turbines
- System engineering

ORGANISATIONAL

- Project implementation
- Operational experience


Summary of recommendations

Wind resource

- Challenge: Even if a hybrid system is well designed...if there's not the wind that was expected then the system won't work as designed
- Recommendation: A thorough wind resource study
-but thorough wind resource studies are expensive and a small windhybrid project cannot support this.
- Recommendation
 - Use latest developments in internet-based tools
 - For example:
 - Global wind atlas (2015)
 - 'Online WAsP' (end 2015)

Online WAsP

- Online tool using global databases as input
- Calculation of energy production and key economic figures
- Designed for small and medium size wind turbines
- Internet based: no need to have software locally
- An initiative by DTU Wind Energy and EMD International
- Two-year project starting beginning of 2014

8 DTU Wind Energy, Technical University of Denmark

4 November 2013

Small wind turbines

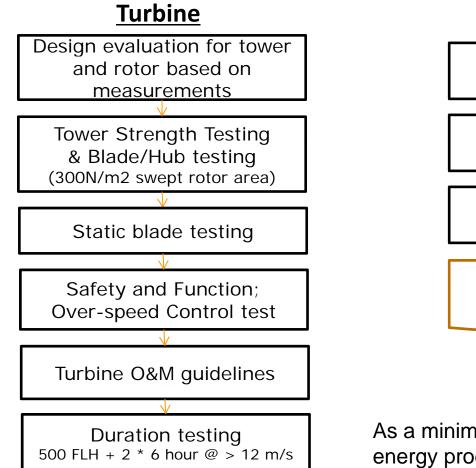
- Challenge: historically have not performed as expected
- Recommendation: implement an approval process to ensure a certain standard
- For example in Denmark:
 - The 'Energy Agency's Secretariat for the Danish Wind Turbine Certification Scheme' managed by DTU.
- Legal Frame for certification:
 - Technical certification scheme for wind turbines: Executive Order no.
 73 of 25 January 2013
- Website: http://www.wt-certification.dk

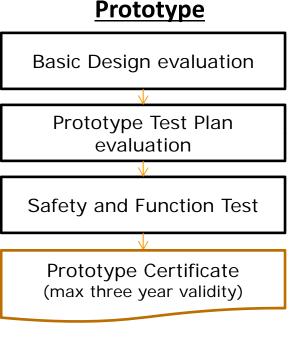
All WTGs in Denmark must be certified

1-200m²: ≈ <40kW

 Certification of wind turbines with a rotor area of less than 200m² shall, as a minimum, include requirements corresponding to the mandatory modules and requirements for type or prototype certification stipulated in the IEC standards as applied in Denmark: DS/EN 61400-22 and DS/EN 61400-2

However there are optional Danish simplified requirements for:


5-40m² : ≈ 1-10kW


 Certification of wind turbines with a rotor area of more than 5m² and up to 40m² shall, as a minimum, include requirements corresponding to simplified Danish requirements.

$1-5m^2$: $\approx <1kW$

• Wind turbines with a rotor area of more than 1m² and up to 5m² are exempted from certification.

Special Danish option: <40m² rule:

As a minimum, wind speed, output and energy production must be measured

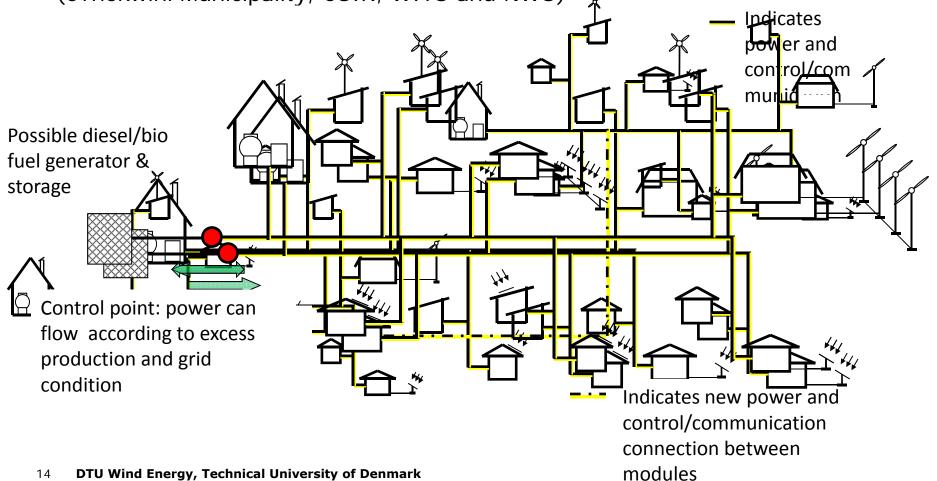
Example

• Thy Møllen Certified to the Danish 5 to 40 m² rule

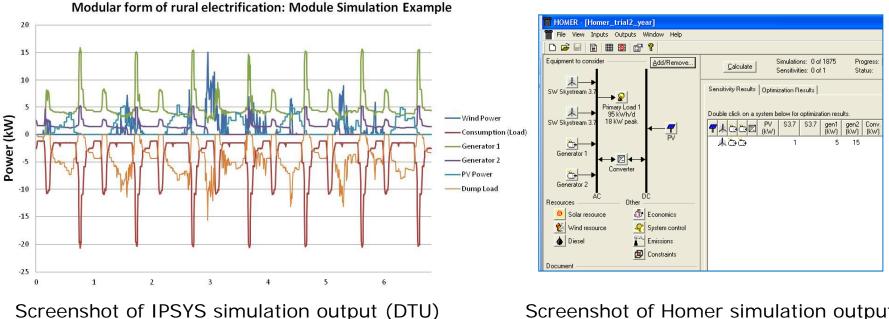
		TWP40-6kW	TWP40-10kW
Rotor diameter	[m]	7,13	7,13
Hub Height	[m]	21,4	21,4
Power	[kW]	6	10
Nom speed	[rpm]	98	106

12 **DTU Wind Energy, Technical University of Denmark**

4 November 2013


System engineering of wind-hybrids

- Challenges:
 - if the national grid is extended, system can be redundant
 - wind turbine output doesn't match pattern of energy use
 - using significant storage can be expensive and has limited lifetime
 - components sometimes not well matched when installed
- Recommendation 1:
 - Systems engineered to be modular i.e. flexible, extendible and able to work with a main grid
 - "Modular form of rural electrification"
 - eThekwini Municipality, South Africa


System engineering

 Modular *concept* developed together with South African partners (eThekwini Municipality, CSIR, WITS and NWU)

System engineering

- Recommendation 2:
 - Use the latest system simulation software
 - More cost effective than building test systems and can provide a better match between components and minimise storage.

DTU Wind Energy, Technical University of Denmark 15

Screenshot of Homer simulation output

System engineering

- Recommendation 3:
 - 'smart grid technology' allows user-participation in matching consumption and production
- Significant development of intelligence in small grids ongoing worldwide
 - load scheduling (move away from 'connect and forget'),
 - co-ordination of inverters
 - management of data & information (local and remote)
- NTUA & CRES (Greece), DTU (Denmark), Fraunhofer IWES & SMA (Germany), NREL & Homer Energy (USA), NEDO (Japan) and many more.

DTU

System engineering CRES Microgrid on Kythnos Island, Greece

Load:12 houses connected on a single phase 230 Vac grid.Generation:5 PV units connected via standard grid-tied inverters.
A 9 kVA diesel genset (for back-up).Storage:Battery (60 Volt, 52 kWh) through 3 bi-directional
inverters operating in parallel.Monitoring:Data logging equipmentSource: NTUA, Greece

17 DTU Wind Energy, Technical University of Denmark

4 November 2013

Outline

- The applications for SWTs and hybrid systems
- The DTU experience

TECHNICAL

- Wind resource
- Small wind turbines
- System engineering

ORGANISATIONAL

- Project implementation
- Operational experience

Summary of recommendations

Project implementation

Challenge: one-off projects rarely work

- Investment is high for individual projects
- Maintenance always difficult with just one system
- Weak knowledge transfer between projects

Recommendation: establish a centre for hybrid systems that can

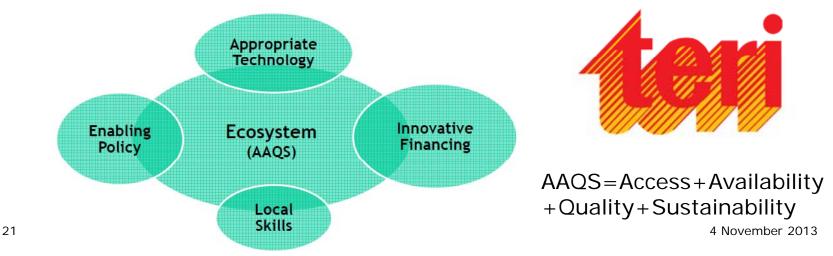
- Provide a regional framework that allows flexible designs to be rolled out in multiple projects.
- Carry out testing and proving conditions
- Oversee approvals of compone
- Establish guidelines and refer t
- Investigate and secure funding
- Act as a source of information
- Co-ordinate local training

Benefits:

- ✓ Reduced risk for investors
- ✓ Systems are developed that are more widely applicable
- ✓ Knowledge gained is retained
- Improves technical quality of components and designs

Operational experience from India

- First operational mini-grid in 1996 (Sunderbands Islands)
- Around 5000 villages supplied through minigrids to date


55kW solar and 3.5kW wind electric generator based hybrid system

20 DTU Wind Energy, Technical University of Denmark

Operational experience from India

Conclusions from a presentation by Dr. Palit, The Energy and Resources Institute (TERI), New Delhi

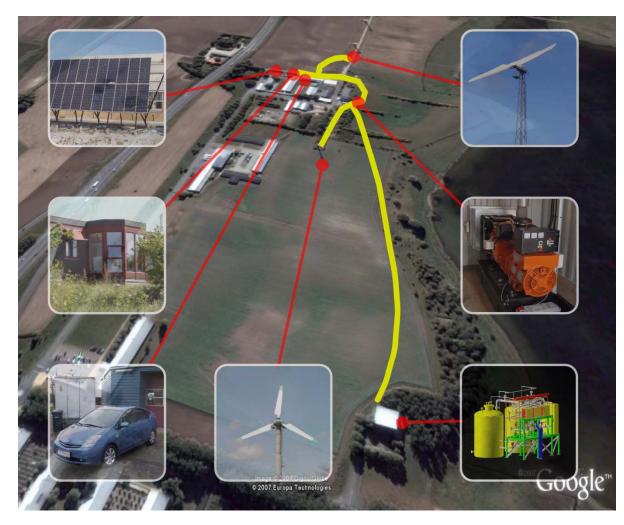
- Cooperative model of service delivery involvement of local community from an early stage
- Adopt multiple technology and state-of-the-art system design but consider local availability of technical knowledge
- Mini-grids preferred to household systems as they can
 - provide power to enable productive uses
 - Be managed more easily through a proper institutional arrangement
- Bundle projects to improve viability of operation

Summary of recommendations for hybrid wind

TECHNICAL

ORGANISATIONAL

- Know the wind resource
- Use simulation software for system
 engineering
- Design for flexibility and grid interconnection


- Create a regional centre
- Test and approve components in relevant conditions
- Apply standards and guidelines
- Ensure user participation from the start

If small wind-hybrid systems are to contribute to rural electrification then avoid one-off projects!

THANK YOU FOR YOUR ATTENTION

SYSLAB – Distributed Energy System Laboratory

SYSLAB at DTU

- is a **platform** for research into Decentralised Energy Resources and testing
- is a flexible experimental setup
- includes several production and consumption units
- has embedded computing power and flexible communication
- has very flexible control possibilities
- can be extended
- is being used for proof-ofconcept implementations

23 DTU Wind Energy, Technical University of Denmark