Cabo Verde’s new Renewable-Energy-Friendly Grid Code

Bernd Weise
DlgsILENT GmbH

International Workshop on Renewable Energy Development in Macaronesia and West Africa

Contents

• Organisational aspects and timeline of the grid code development
• The power systems of Cabo Verde
• Understanding of a grid code
• Challenges for development of Cabo Verde’s grid code
• Technical aspects
• Conclusions
Organisational Aspects & Timeline of Grid Code Development

Organisational Aspects

- Project for grid code development initiated in 2015 by DGE / MTIDE (Cabo Verde) and GIZ (Germany) within the “Renewable Energies on Islands” project
- DIgSILENT subcontracted for advisory consultancy services
- Project carried out by DIgSILENT in close cooperation with DGE/MTIDE and GIZ

Timeline

- Project started in 4th quarter of 2015
- First field trip in January 2016
- First draft of the grid code in February 2016
- Second field trip in March 2016
- Final grid code version handed over beginning of April 2016 (EN & PT)

DGE = Direção Geral de Energia / Directorate-General Energy
MTIDE = Ministério do Turismo, Investimento e Desenvolvimento Empresarial / Ministry of Tourism, Investment and Business Development
GIZ = Deutsche Gesellschaft für Internationale Zusammenarbeit

Organisational Aspects & Timeline of Grid Code Development

First field trip

• January 2016
• Individual meetings with key stakeholders (companies and institutions):
 – organised and supported by DGE
 – in total 8 meetings
 – on 4 islands (Santiago, São Vicente, Sal, Boa Vista)

Second field trip

• March 2016
• Presentation and discussion of draft version of grid code
• Two 1-day sessions on two islands (Santiago and São Vicente)
• Large number of participants
• Positive, constructive and cooperative discussions
The Power Systems of Cabo Verde

• Several electric island systems with different sizes
 – 9 inhabited islands, each has its own islanded electric power system
 – Sizes vary from approx. 500 kW to 35 MW (peak load of the systems)

• Voltage levels
 – High voltage (HV): 60 kV, only on Santiago
 – Medium voltage (MV): mainly 20 kV
 (on some islands also 6.3 kV, 10 kV, 15 kV)
 – Low voltage (LV): 230/400 V

• Power generation
 – Gen-sets with combustion engines using fuel oil or gasoline
 – Wind power parks
 – Solar photovoltaic (PV) parks and smaller PV installations
The Power Systems of Cabo Verde

- Goals for future development
 - Increase of renewable energies to 100%
 - Independence from fuel imports
 - Environmental aspects (decrease of pollution and CO₂ emission)
 - Green image important for tourist sector
 - Distributed generation (net metering)
 - Storage systems (to equalise the fluctuating power injection from renewables)
Understanding of a Grid Code

Network codes can have different tasks:

• Requirements for power generating installations
• Network operating guidelines (handbook)
• Requirements for demand side

The grid code developed for Cabo Verde defines requirements for future power generating installations and energy storage systems to ensure a stable, reliable and safe electric power supply with increasing renewable energies.

• It does not privilege any specific technology, but differentiates
 – synchronous generators (Type 1) and
 – other kinds of generators (Type 2).
• It is not a network operating handbook.
• It is an exclusively technical document.
• It does not describe a tender process or any framework for procurement.
Challenges for Development of Cabo Verde’s Grid Code

- Requirements shall ensure operation with 100% renewable energies (RE)
 ⇒ More power electronic converters
 ⇒ Less conventional generators
 ⇒ Lower short-circuit power
 ⇒ Lower inertia (less rotating masses connected)

- Requirements shall apply to RE and conventional power generation
 ⇒ Grid code applicable to different technologies

- As an increasing number of small distributed generation units may be connected to the low voltage network in the future, the grid code shall address these as well
 ⇒ Grid code applicable to all voltage levels

- Grid code shall apply to power generation and storage systems

- Grid code shall apply for all islands
 ⇒ Suitable for different sizes of electrical systems
The main philosophy of the grid code:

- **Large** power generating installations are considered to be system-critical
 - Behaviour of the system is dominated by these installations
 - Risk of system collapse in case of sudden loss of such an installation
 - “Large” in terms of nominal active power of the installation
 - “Large” is considered as 5% or more of peak load demand of the island

- **Small** power generating installations
 - A particular small installation itself can hardly impact the power system
 - A larger number of small installations can have a significant influence
Technical Aspects

The main philosophy of the grid code:

• Power generating installations connected to the MV or HV network “build” the grid:
 – Voltage control
 – Reactive power capability
 – Frequency control
 – Dynamic voltage support during network faults (keep the system “alive”)
 – etc.

• Power generating installations connected to the LV network
 – Shall give limited support (e.g. limited frequency sensitive mode)
 – Should not get lost during network faults (as far as possible), but…
 – Safety first
 – Avoid unintended islanded operation of network feeders
Technical Aspects

Classes of Power Generating Installations and Energy Storage Systems

Nominal Active Power

- Small
 - Class A
 - PoC
 - LV
 - Class A-LV
 - Requirements according to Section 4.1.2
 - MV/HV
 - Class A-MV
 - Requirements according to Section 4.2.1

- Large
 - Class B
 - PoC
 - LV
 - Class B-LV
 - Requirements according to Section 4.1.3
 - MV/HV
 - Class B-MV
 - Requirements according to Section 4.2.2

- Very Large
 - Class C
 - MV/HV
 - Requirements according to Section 4.2.3

Technical Aspects

<table>
<thead>
<tr>
<th>Technical Requirement</th>
<th>Class A-LV</th>
<th>Class B-LV</th>
<th>Class A-MV</th>
<th>Class B-MV</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral point connection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Voltage operating range</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frequency operating range</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Limited Frequency Sensitive Mode – Overfrequency (LFSM-O)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Limited Frequency Sensitive Mode – Underfrequency (LFSM-U)</td>
<td>Storage</td>
<td>Storage</td>
<td>Storage</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>Frequency sensitive mode (FSM)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Synthetic inertia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reactive power</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reactive power capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Voltage control, reactive power control</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Technical Aspects

<table>
<thead>
<tr>
<th>Technical Requirement</th>
<th>Class A-LV</th>
<th>Class B-LV</th>
<th>Class A-MV</th>
<th>Class B-MV</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power quality</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Undervoltage-Ride-Through (UVRT)</td>
<td>Type 2</td>
<td>Type 2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Overvoltage-Ride-Through (OVRT)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dynamic Voltage Support during UVRT or OVRT</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protective disconnection devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Overcurrent protection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Connection and reconnection conditions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Synchronisation</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Disconnection / Soft-Shutdown</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remote Control Access</td>
<td>Limited</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fault recoding and PQ monitoring</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Technical Aspects

Frequency Sensitive Mode (FSM) and Limited Frequency Sensitive Mode (LFSM)

Technical Aspects

Reactive Power Capability

Figures for Type 2 installations
Technical Aspects

Overvoltage- and Undervoltage-Ride-Through

Figures for connections to MV or HV network
Technical Aspects

Dynamic Voltage Support during UVRT and OVRT

Figure drawn in generation-oriented way
Conclusions

• During the 1st quarter of 2016 a grid code has been developed for Cabo Verde
• Meetings and discussions with key stakeholders
• The grid code
 – Applies to
 • power generating installations and
 • energy storage systems
 • in all voltage levels (LV, MV, HV)
 – Does not privilege any specific technology
 – Defines technical requirements for power generating installations and energy storage systems to ensure a stable, reliable and safe electric power supply with increasing renewable energies
 – Comprises aligned technical requirements for different classes
Thank you very much!
Muito obrigado!

Bernd Weise
DIgSILENT GmbH

b.weise@digsilent.de