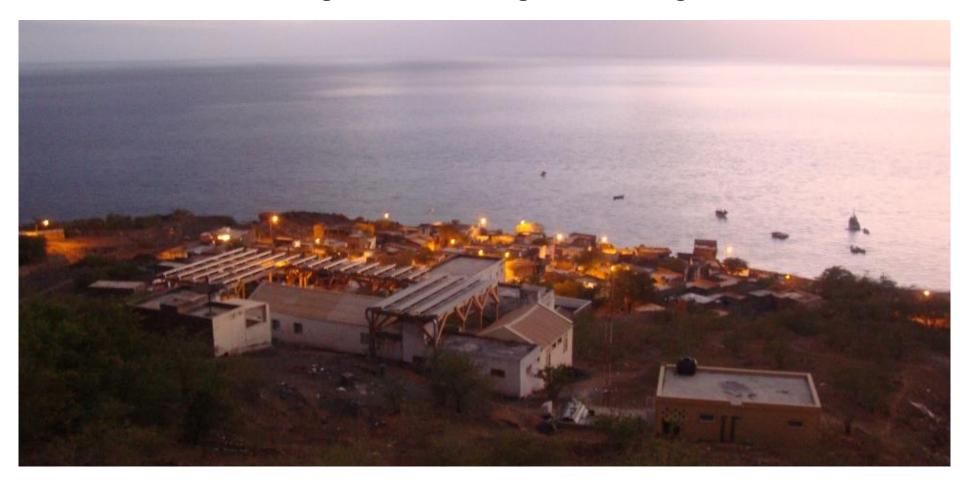


RE MICRO-GRIDS FOR RURAL ELECTRIFICATION PRESENTATION

FRIDAY, 27TH SEPTEMBER 2012 DAKAR, SENEGAL

PRESENTATION OUTLINE

- 1. BASICS ON MICRO-GRIDS
- 2. ELECTRICITY DEMAND ANALYSIS IN RURAL AREAS
- 3. LEAST COST OPTION SYSTEMS ASSESSMENT

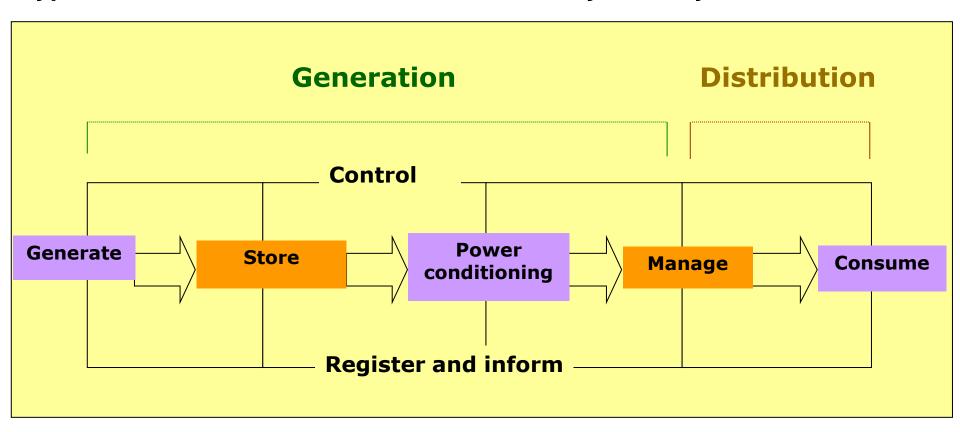


What is a micro-grid? And a mini-grid? And off-grid solutions?

Source: APP (2012)

What is a micro-grid? And a mini-grid? And off-grid solutions?

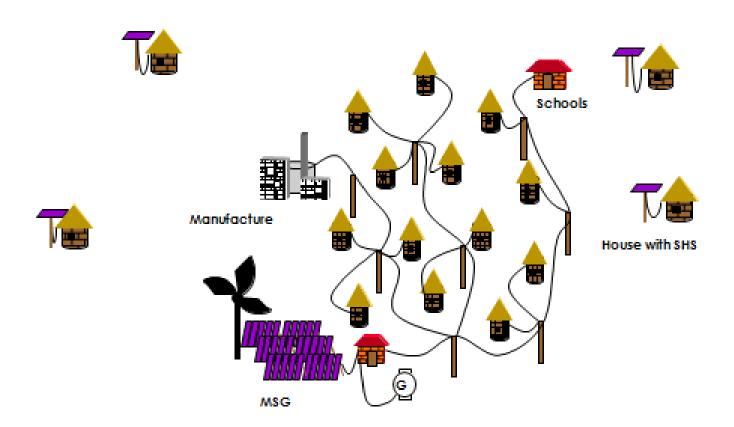
What is a micro-grid? And a mini-grid? And off-grid solutions?



Typical functions in a decentralised electricity delivery scheme

In the context of decentralised (or stand-alone or off-grid) electrification the term microgrid should strictly refer to the combination of a generation microplant which feeds a distribution microgrid

Microgrids vs Individual Systems (Microplants)


	Advantages	Disadvantages
Individual Systems (micro plants)	Consumption is user managed on a day to day basis. Black outs affect only one user. PV micro plants can be easily moved to a new location.	Limited surge power capacity. Monitoring individual plants can be expensive and difficult. Maintenance and repair service complex to organize in rural areas.
Multiuser Microgrids	Improved quality (surge power, load shedding, etc). Lower investment for compact villages. Energy saving can be practiced using improved management tools. Lower maintenance costs. Remote monitoring can be feasible and even economic	In a general power plant failure, everybody is cut off.Social rules required to distribute energy availability.Local management required.Plants generally need to be serviced on site

Source: Trama Tecnoambiental (2010)

Microgrids vs Individual Systems

Technical specifications of Hybrid Microgrids

(partially adapted from IEC 62257 TS series, IEA PVPS Task3 and Task11 recommended practices

A combination of different but complementary energy generation technologies based on RE or mixed (RES + genset)

Should provide steady community-level electricity service (24h), with the possibility to be upgraded to grid connection in the future

Total installed power up to 100 kW (IEC standards)

Distribution line in Low Voltage (up to 1.000V) (only distribution)

Single or 3-phase grid

Monte Trigo (Cape Verde) – 274 habitants 27 kW PV with battery storage + diesel back-up – 3.120 kWh/month

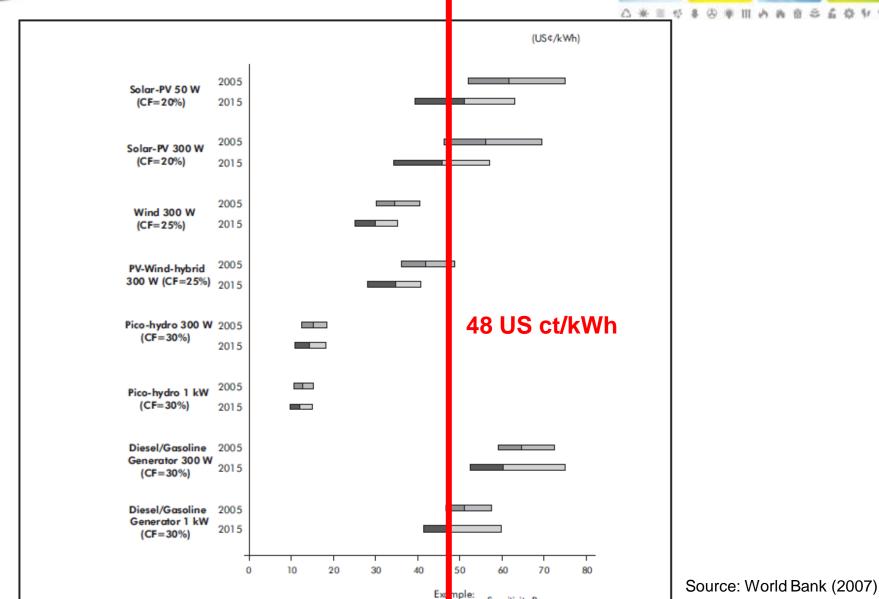
Source: APP (2012)

GENERATION TECHNOLOGY OPTIONS AND CONFIGURATIONS

Generating-types Life	Life Span (Year)	Off-grid Capacity		Mini-grid		Grid-connected				
			— CF (%)			Base Load	Peak			
				Capacity	 CF (%)	Capacity	CF (%)	Capacity	CF (%)	
Solar-PV	20 25	50 W 300 W	20	25 kW	20	5 MW	20			
Wind	20	300 W	25	100 kW	30	10 MW 100 MW	30			
PV-wind-hybrids	20	300 W	25	100 kW	30					
Solar Thermal With Store Solar Thermal Without Stor						30 MW 30 MW	50 20			
Geothermal Binary Geothermal Binary Geothermal Flash	20 30 30			200 kW	70	20 MW 50 MW	90 90			
Biomass Gasifier	20			100 kW	80	20 MW	80			
Biomass Steam	20					50 MW	80			
MSW/Landfill Gas	20					5 MW	80			
Biogas	20			60 kW	80					
Pico/Microhydro	5 15 30	300 W 1 kW	30 30	100 kW	30					

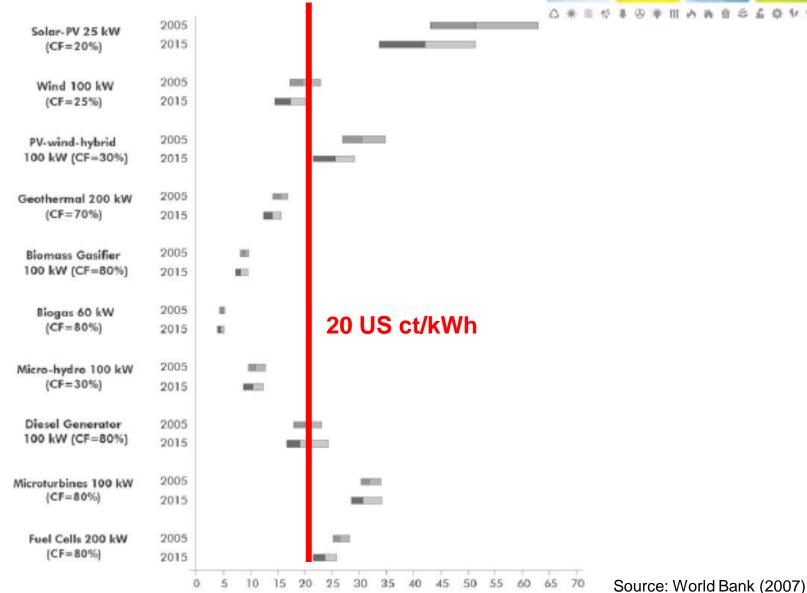
Bank (2007)

GENERATION TECHNOLOGY OPTIONS AND CONFIGURATIONS



Generating-types	Life Span (Year)	Off-grid Capacity	Mini-grid			Grid-connected			
			 CF (%)	Capacity		Base Load	Peak		
					CF (%)	Capacity	CF (%)	Capacity	CF (%)
Diesel/Gasoline Gene	erator 10 30 20	0 W, 1 kW	30	100 kW	80	5 MW	80	5 MW	10
Microturbines	20			150 kW	80				
Fuel Cells	20			200 kW	80	5 MW	80		

OFF-GRID FORECAST GENERATION COST (LCOE)



MINI GRID FORECAST GENERATION COST (LCOE)

ELECTRICITY GENERATION VS TARIFF INCOMES

INCOME - COSTS ≥ 0

ELECTRICITY DEMAND ESTIMATION

Solar energy production

Source: Trama Tecnoambiental (2010)

ELECTRICITY GENERATION VS TARIFF INCOMES

Electricity generation

Electricity demand

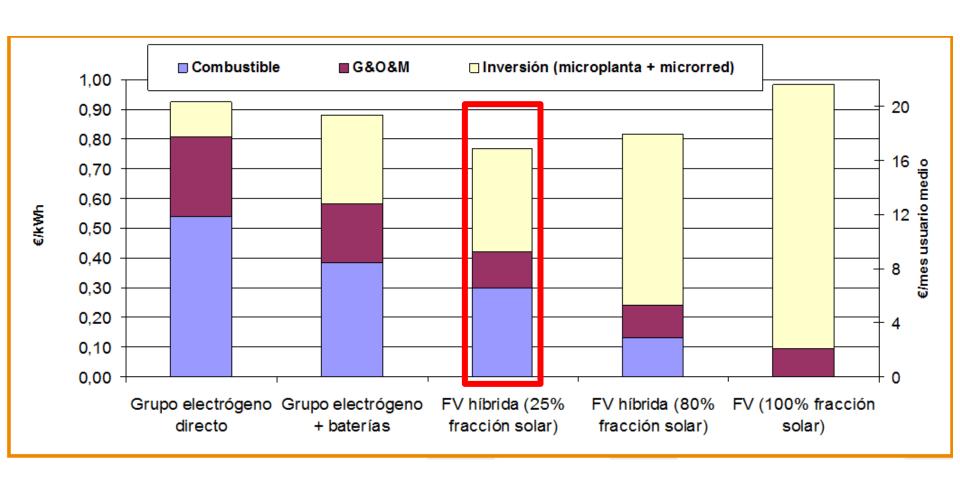
Cost (tariff)

ESMAP STUDY: PADRE COCHA (PERU)

Project overview

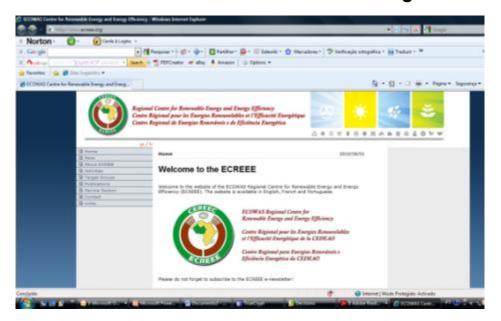
Electricity demand

- 240 rural consumers +
 Public services
- 220 kWh/day
- Peak load: 22 kW at night


Technically feasible options considered

- Diesel-only
- Diesel-battery-hybrid
- PV-diesel-battery-hybrid with four different PV %
- PV only
- PV-individual home systems

ESMAP STUDY: PADRE COCHA (PERU)



Thank you! Merci! Muito Obrigado!

Visit our website www.ecreee.org

www.ecreee.org 20