The HOMER Simulation Tool
PROS & CONS

ECREEE Regional Training of Trainers Workshop:
HOMER software for RE project design

Jorge Sneij and David Vilar
June 2013
I. IDEAL EXAMPLE

Considerations:
Dimensioning and Simulating
What is dimensioning and simulating in this training?

IDEAL EXAMPLE

“Consider that our purpose is to build a spacecraft to reach the moon.”

Before building it, you have to understand the physics behind and the available technology before you start such a complex project.

- The equations are related to the model, that will explain the behavior of your spacecraft in the context.
- The available technology refer to the inputs you will use (among other parameters such as restrictions).
Oversized results

If you have the technology and the real inputs, but you don’t understand the model, it is very likely that your solution will be either oversized or wrong.
If you understand the model, but you don’t have the proper technology data and real inputs, it is very likely that your solutions will be either unrealistic or wrong.
Criteria and convergence

• It is the human, with criteria who drives the simulation software to converge to feasible solutions.

• If you start a simulation without criteria, probably you will face a situation of many (or none) results without finding a good solution.
Simulating different sizes and all the possible combinations

IN THIS IDEAL EXAMPLE OF A SPACECRAFT,

Through a computer simulation we can try different sizes (or dimension) of the components for a spacecraft, as well to set different technology combinations and restrictions ...

[the computer runs the model with our inputs]

... and then we can analyze the results: a list of feasible technology combinations.

Finally, we select the more convenient solution for our purpose taking into account several parameters and conditions.
II. HYBRID ENERGY SYSTEM SIMULATION

What HOMER software does.
Life cycle project: stages, dimensioning, simulation and design
MAIN PURPOSE OF THE SIMULATION:
“to dimension conveniently”

• TO DIMENSION an hybrid energy system
 – Generator size
 • for a given energy demand
 • for a given list of available technology and restrictions to consider
HOMER SIMULATES DIFFERENT SIZES (dimensioning) OF THE SYSTEM

• A dimensioning tool (also referred to as a sizing tool) performs dimensioning of the system: given an energy requirement, it determines the *optimal size of each of the different components of the system*

• With simulation tools, as opposed to dimensioning tools, the user must specify the nature and size of each component. *The tool then provides a detailed analysis of the behavior of the system.*

• **Simulation tools can also be used for sizing.** This requires that the user correctly identify the key variables and then repeatedly run the simulation, adjusting the variables manually to converge on an acceptable sizing. Some packages automate this process.

Source: IEA, 2011
Simulation in HOMER

• To use HOMER, you provide the model with inputs, which describe technology options, component costs, and resource availability.

• HOMER uses these inputs to simulate different system configurations, or combinations of components, and generates results that you can view as a list of feasible configurations sorted by net present cost.

• HOMER also displays simulation results in a wide variety of tables and graphs that help you compare configurations and evaluate them on their economic and technical merits.

Source: HOMER ENERGY, 2011
List of feasible solutions
Evaluation of each solution: economics and technical performance
How does HOMER work?

- HOMER simulates the operation of a system by making energy balance calculations for each of the 8,760 hours in a year.
- For each hour calculates the flows of energy to and from each component of the system.
- HOMER performs these energy balance calculations for each system configuration that you want to consider.
- It then determines whether a configuration is feasible, i.e., whether it can meet the electric demand under the conditions that you specify.
- It estimates the cost of installing and operating the system over the lifetime of the project.

Source: HOMER ENERGY, 2011
Hourly energy balance calculations
III. PROS & CONS

Advantages and Disadvantages
HOMER

Among other aspects to debate, we may say that for this training HOMER has some advantages and disadvantages.

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulates a list of real technologies, as a catalogue of available technologies and components.</td>
<td>Quality input data needed (sources).</td>
</tr>
<tr>
<td>Very detailed results for analysis and evaluation.</td>
<td>Detailed input data (and time) needed.</td>
</tr>
<tr>
<td>Determines the possible combinations of a list of different technologies and its size.</td>
<td>Experienced criteria is needed to converge to the good solutions.</td>
</tr>
<tr>
<td>It is fast to run many combinations.</td>
<td>If you miss key values or sizes, HOMER will not guess them!</td>
</tr>
<tr>
<td>You can learn from the results, and optimize.</td>
<td>You can loose yourself if you don’t set the adequate questions.</td>
</tr>
</tbody>
</table>
IV. HOW CAN THIS SIMULATION TOOL BE USEFUL TO YOU?

Examples, outputs, results and analysis
Two scenarios after this training

• **Audit of projects**
 – You will be able to create a HOMER file, input the data used in a project or in a proposal, and get a list of feasible solutions. You may use the results to establish a dialogue with the hybrid system designer, and require more answers or justifications.

• **Site appraisal**
 – You will be able to create a HOMER file, input relevant data and get a list of feasible solutions. You may use the results to develop insight into your designs (or plans), exploring the implications, reasoning key aspects and establish recommendations.
Audit scenario

Source: SOTECC, SMA and TTA
Appraisal scenario

Source: ECREEE and HOMER ENERGY
References

Merci! Thank you! Muito obrigado!

Secretariat du CEREEC
Achada Santo Antonio
B.P. 288, Praia – Cap-Vert
Tel: +2382624608
http://www.ecreee.org
info@ecreee.org